Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(4): e0012078, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640118

RESUMO

BACKGROUND: With the current treatment options for visceral leishmaniasis (VL), recrudescence of the parasite is seen in a proportion of patients. Understanding parasite dynamics is crucial to improving treatment efficacy and predicting patient relapse in cases of VL. This study aimed to characterize the kinetics of circulating Leishmania parasites in the blood, during and after different antileishmanial therapies, and to find predictors for clinical relapse of disease. METHODS: Data from three clinical trials, in which Eastern African VL patients received various antileishmanial regimens, were combined in this study. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative PCR (qPCR) before, during, and up to six months after treatment. An integrated population pharmacokinetic-pharmacodynamic model was developed using non-linear mixed effects modelling. RESULTS: Parasite proliferation was best described by an exponential growth model, with an in vivo parasite doubling time of 7.8 days (RSE 12%). Parasite killing by fexinidazole, liposomal amphotericin B, sodium stibogluconate, and miltefosine was best described by linear models directly relating drug concentrations to the parasite elimination rate. After treatment, parasite growth was assumed to be suppressed by the host immune system, described by an Emax model driven by the time after treatment. No predictors for the high variability in onset and magnitude of the immune response could be identified. Model-based individual predictions of blood parasite load on Day 28 and Day 56 after start of treatment were predictive for clinical relapse of disease. CONCLUSION: This semi-mechanistic pharmacokinetic-pharmacodynamic model adequately captured the blood parasite dynamics during and after treatment, and revealed that high blood parasite loads on Day 28 and Day 56 after start of treatment are an early indication for VL relapse, which could be a useful biomarker to assess treatment efficacy of a treatment regimen in a clinical trial setting.

2.
PLoS Negl Trop Dis ; 17(11): e0011780, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988402

RESUMO

BACKGROUND: Treatment for post-kala-azar dermal leishmaniasis (PKDL) in Sudan is currently recommended only for patients with persistent or severe disease, mainly because of the limitations of current therapies, namely toxicity and long hospitalization. We assessed the safety and efficacy of miltefosine combined with paromomycin and liposomal amphotericin B (LAmB) for the treatment of PKDL in Sudan. METHODOLOGY/PRINCIPAL FINDINGS: An open-label, phase II, randomized, parallel-arm, non-comparative trial was conducted in patients with persistent (stable or progressive disease for ≥ 6 months) or grade 3 PKDL, aged 6 to ≤ 60 years in Sudan. The median age was 9.0 years (IQR 7.0-10.0y) and 87% of patients were ≤12 years old. Patients were randomly assigned to either daily intra-muscular paromomycin (20mg/kg, 14 days) plus oral miltefosine (allometric dose, 42 days)-PM/MF-or LAmB (total dose of 20mg/kg, administered in four injections in week one) and oral miltefosine (allometric dose, 28 days)-LAmB/MF. The primary endpoint was a definitive cure at 12 months after treatment onset, defined as clinical cure (100% lesion resolution) and no additional PKDL treatment between end of therapy and 12-month follow-up assessment. 104/110 patients completed the trial. Definitive cure at 12 months was achieved in 54/55 (98.2%, 95% CI 90.3-100) and 44/55 (80.0%, 95% CI 70.2-91.9) of patients in the PM/MF and AmB/MF arms, respectively, in the mITT set (all randomized patients receiving at least one dose of treatment; in case of error of treatment allocation, the actual treatment received was used in the analysis). No SAEs or deaths were reported, and most AEs were mild or moderate. At least one adverse drug reaction (ADR) was reported in 13/55 (23.6%) patients in PM/MF arm and 28/55 (50.9%) in LAmB/MF arm, the most frequent being miltefosine-related vomiting and nausea, and LAmB-related hypokalaemia; no ocular or auditory ADRs were reported. CONCLUSIONS/SIGNIFICANCE: The PM/MF regimen requires shorter hospitalization than the currently recommended 60-90-day treatment, and is safe and highly efficacious, even for patients with moderate and severe PKDL. It can be administered at primary health care facilities, with LAmB/MF as a good alternative. For future VL elimination, we need new, safe oral therapies for all patients with PKDL. TRIAL REGISTRATION: ClinicalTrials.gov NCT03399955, https://clinicaltrials.gov/study/NCT03399955 ClinicalTrials.gov ClinicalTrials.gov.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Criança , Paromomicina/efeitos adversos , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/efeitos adversos , Leishmaniose Cutânea/tratamento farmacológico , Fosforilcolina/efeitos adversos , Resultado do Tratamento
4.
J Antimicrob Chemother ; 78(11): 2702-2714, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37726401

RESUMO

OBJECTIVES: To improve visceral leishmaniasis (VL) treatment in Eastern Africa, 14- and 28-day combination regimens of paromomycin plus allometrically dosed miltefosine were evaluated. As the majority of patients affected by VL are children, adequate paediatric exposure to miltefosine and paromomycin is key to ensuring good treatment response. METHODS: Pharmacokinetic data were collected in a multicentre randomized controlled trial in VL patients from Kenya, Sudan, Ethiopia and Uganda. Patients received paromomycin (20 mg/kg/day for 14 days) plus miltefosine (allometric dose for 14 or 28 days). Population pharmacokinetic models were developed. Adequacy of exposure and target attainment of paromomycin and miltefosine were evaluated in children and adults. RESULTS: Data from 265 patients (59% ≤12 years) were available for this pharmacokinetic analysis. Paromomycin exposure was lower in paediatric patients compared with adults [median (IQR) end-of-treatment AUC0-24h 187 (162-203) and 242 (217-328) µg·h/mL, respectively], but were both within the IQR of end-of-treatment exposure in Kenyan and Sudanese adult patients from a previous study. Cumulative miltefosine end-of-treatment exposure in paediatric patients and adults [AUCD0-28 517 (464-552) and 524 (456-567) µg·day/mL, respectively] and target attainment [time above the in vitro susceptibility value EC90 27 (25-28) and 30 (28-32) days, respectively] were comparable to previously observed values in adults. CONCLUSIONS: Paromomycin and miltefosine exposure in this new combination regimen corresponded to the desirable levels of exposure, supporting the implementation of the shortened 14 day combination regimen. Moreover, the lack of a clear exposure-response and exposure-toxicity relationship indicated adequate exposure within the therapeutic range in the studied population, including paediatric patients.


Assuntos
Antiprotozoários , Leishmaniose Visceral , Humanos , Adulto , Criança , Paromomicina/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/farmacocinética , Quênia , Fosforilcolina/uso terapêutico , Fosforilcolina/farmacocinética , Uganda , Resultado do Tratamento
5.
J Antimicrob Chemother ; 78(10): 2406-2418, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37638690

RESUMO

Pyronaridine-artesunate was recently strongly recommended in the 2022 update of the WHO Guidelines for the Treatment of Malaria, becoming the newest artemisinin-based combination therapy (ACT) for both uncomplicated Plasmodium falciparum and Plasmodium vivax malaria. Pyronaridine-artesunate, available as a tablet and paediatric granule formulations, is being adopted in regions where malaria treatment outcome is challenged by increasing chloroquine resistance. Pyronaridine is an old antimalarial agent that has been used for more than 50 years as a blood schizonticide, which exerts its antimalarial activity by interfering with the synthesis of the haemozoin pigment within the Plasmodium digestive vacuole. Pyronaridine exhibits a high blood-to-plasma distribution ratio due to its tendency to accumulate in blood cells. This feature is believed to play a crucial role in its pharmacokinetic (PK) properties and pharmacological activity. The PK characteristics of pyronaridine include rapid oral absorption, large volumes of distribution and low total body clearance, resulting in a long terminal apparent half-life. Moreover, differences in PK profiles have been observed between healthy volunteers and malaria-infected patients, indicating a potential disease-related impact on PK properties. Despite a long history, there is only limited knowledge of the clinical PK and pharmacodynamics of pyronaridine, particularly in special populations such as children and pregnant women. We here provide a comprehensive overview of the clinical pharmacology of pyronaridine in the treatment of malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Gravidez , Humanos , Criança , Feminino , Malária Falciparum/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Malária/tratamento farmacológico , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Cloroquina/uso terapêutico
6.
Pharm Res ; 39(10): 2487-2495, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986122

RESUMO

BACKGROUND: Vincristine, a chemotherapeutic agent that extensively binds to ß-tubulin, is commonly dosed at 1.4-2.0 mg/m2 capped at 2 mg. For infants, doses vary from 0.025-0.05 mg/kg or 50-80% of the mg/m2 dose. However, evidence for lower doses in infants compared to older children is lacking. This study was conducted to unravel the complex pharmacokinetics of vincristine, including the effects of age, to assist optimal dosing in this population. METHODS: 206 patients (0.04-33.9 years; 25 patients < 1 years), receiving vincristine, with 1297 plasma concentrations were included. Semi-mechanistic population pharmacokinetic analyses were performed using non-linear mixed effects modelling. RESULTS: A three-compartment model, with one saturable compartment resembling saturable binding to ß-tubulin and thus, saturable distribution, best described vincristine pharmacokinetics. Body weight and age were covariates significantly influencing the maximal binding capacity to ß-tubulin, which increased with increasing body weight and decreased with increasing age. Vincristine clearance (CL) was estimated as 30.6 L/h (95% confidence interval (CI) 27.6-33.0), intercompartmental CL (Q) as 63.2 L/h (95%CI 57.2-70.1), volume of distribution of the central compartment as 5.39 L (95%CI 4.23-6.46) and of the peripheral compartment as 400 L (95%CI 357-463) (all parameters correspond to a patient of 70 kg). The maximal binding capacity was 0.525 mg (95%CI 0.479-0.602) (for an 18 year old patient of 70 kg), with a high association rate constant, fixed at 1300 /h and a dissociation constant of 11.5 /h. INTERPRETATION: A decrease of vincristine ß-tubulin binding capacity with increasing age suggests that young children tolerate higher doses of vincristine.


Assuntos
Modelos Biológicos , Tubulina (Proteína) , Adolescente , Peso Corporal , Criança , Pré-Escolar , Humanos , Lactente , Vincristina
7.
Clin Pharmacokinet ; 61(11): 1545-1558, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040612

RESUMO

BACKGROUND AND OBJECTIVE: Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy. METHODS: Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5). RESULTS: In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied. CONCLUSIONS: This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.


Assuntos
Hipóxia-Isquemia Encefálica , Oxipurinol , Humanos , Recém-Nascido , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Hipoxantina , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Manitol , Oxipurinol/farmacologia , Ácido Úrico , Xantina , Xantina Desidrogenase , Estudos Clínicos como Assunto
8.
Neurosci Lett ; 782: 136690, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35598692

RESUMO

Our study aimed to determine the effects of pilocarpine and the mechanisms involving muscarinic acetylcholine receptors (mAChRs) on glycine receptors (GlyRs) in neurons of the spinal cord ventral horn. An enzymatic digestion combined with acute mechanical separation was applied to isolate neurons from the spinal cord ventral horn. Patch-clamp recording was then used to investigate the outcomes of pilocarpine. Our results indicate that pilocarpine increased the glycine currents in a concentration-dependent manner, which was blocked by the M3-AChR selective antagonists 4-DAMP and J104129. Pilocarpine also enhanced the glycine currents in nominally Ca2+-free extracellular solution. Conversely, the enhancement of glycine currents by pilocarpine disappeared when intracellular Ca2+ was chelated by BAPTA. Heparin and Xe-C, which are IP3 receptor antagonists, also totally abolished the pilocarpine effect. Furthermore, Bis-IV, a PKC inhibitor, eliminated the pilocarpine effect. Additionally, PMA, a PKC activator, mimicked the pilocarpine effect. These results indicate that pilocarpine may increase the glycine currents by activating the M3-AChRs and IP3/Ca2+/PKC pathways.


Assuntos
Células do Corno Anterior , Glicina , Células do Corno Anterior/metabolismo , Glicina/metabolismo , Glicina/farmacologia , Pilocarpina/farmacologia , Transdução de Sinais , Medula Espinal/metabolismo
9.
Clin Pharmacokinet ; 61(2): 321-333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617261

RESUMO

BACKGROUND: Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates. OBJECTIVE: The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated. METHODS: Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling. RESULTS: Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62-1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25-2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23-0.3) and 11 L (95% CI 9.9-12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31-0.42). CONCLUSION: The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH.


Assuntos
Hipóxia-Isquemia Encefálica , Oxipurinol , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Biomarcadores , Inibidores Enzimáticos , Humanos , Hipoxantina , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Recém-Nascido , Oxipurinol/farmacocinética , Ácido Úrico , Xantina , Xantina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...